I’m Lingxiao Wang(王 凌霄), now a Research Scientist(PI) in RIKEN-iTHEMS (理化学研究所 数理創造プログラム). My research interest includes Machine Learning in Physics (especially high energy nuclear physics, e.g., QCD Matter, Lattice QCD, etc.), Medical AI and Human Behavior. See my latest CV here.

Now, I’m running a working group of “DEEP-IN” in RIKEN-iTHEMS, which aims to develop deep learning models for inverse problems in physical sciences.

I have organized many “machine learning physics” seminars for physicists online, find the previous activities in our page MLP club. If you are seeking any form of academic cooperation, please feel free to contact me via lwang[at]fias.uni-frankfurt.de.

🔥 News

🔍 Researches

  • Generative Models in Lattice Calculations
  1. Zhu, Q., Aarts, G., Wang, W., Zhou, K. & Wang, L. Physics-Conditioned Diffusion Models for Lattice Gauge Theory. arXiv:2502.05504 [hep-lat] (2025).
  2. Aarts, G., Habibi, D. E., Wang, L. & Zhou, K. On learning higher-order cumulants in diffusion models. arXiv:2410.21212 [hep-lat] (2024).
  3. Xu, T., Wang, L., He, L., Zhou, K. & Jiang, Y. Building imaginary-time thermal field theory with artificial neural networks. Chin. Phys. C 48, 103101 (2024).
  4. Wang, L., Aarts, G. & Zhou, K. Diffusion models as stochastic quantization in lattice field theory. JHEP 05, 060 (2024).
  5. Chen, S. et al. Fourier-flow model generating Feynman paths. Phys. Rev. D 107, 056001 (2023).
  6. Wang, L., Jiang, Y., He, L. & Zhou, K. Continuous-mixture autoregressive networks learning the Kosterlitz-Thouless transition. Chin. Phys. Lett. 39, 120502 (2022).
  • Inverse Problems
  1. Aarts, G. et al. Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics. Nat Rev Phys 7, 154–163 (2025). 2.Wang, L. Deep learning for exploring hadron–hadron interactions. J. Subatomic Part. Cosmol. 3, 100024 (2025).
  2. Wang, L. & Zhao, J. Learning Hadron Emitting Sources with Deep Neural Networks. arXiv:2411.16343 [nucl-th] (2024).
  3. Soma, S., Wang, L., Shi, S., Stöcker, H. & Zhou, K. Reconstructing the neutron star equation of state from observational data via automatic differentiation. Phys. Rev. D 107, 083028 (2023).
  4. Shi, S., Wang, L. & Zhou, K. Rethinking the ill-posedness of the spectral function reconstruction — Why is it fundamentally hard and how Artificial Neural Networks can help. Comput. Phys. Commun. 282, 108547 (2023).
  5. Wang, L., Shi, S. & Zhou, K. Reconstructing spectral functions via automatic differentiation. Phys. Rev. D 106, L051502 (2022).
  • AI for Science
  1. Xiao, H. et al. CloudDiff: Super-resolution ensemble retrieval of cloud properties for all day using the generative diffusion model. Preprint (2024).
  2. Zhou, S., Shi, R. & Wang, L. Extracting macroscopic quantities in crowd behaviour with deep learning. Phys. Scr. 99, 065213 (2024).
  3. Xiang, M., Yuan, H., Wang, L., Zhou, K. & Roskos, H. G. Amplitude/Phase Retrieval for Terahertz Holography with Supervised and Unsupervised Physics-Informed Deep Learning. IEEE Transactions on Terahertz Science and Technology, 1–9 (2024).
  4. Wang, L., Hare, B. M., Zhou, K., Stöcker, H. & Scholten, O. Identifying lightning structures via machine learning. Chaos Solitons and Fractals: the interdisciplinary journal of Nonlinear Science and Nonequilibrium and Complex Phenomena 170, 113346 (2023).
  5. Zhong, Y.-W. et al. Tumor radiomics signature for artificial neural network-assisted detection of neck metastasis in patient with tongue cancer. Journal of Neuroradiology 49, 213–218 (2022).
  6. Wang, L. et al. Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. Mach. Learn.: Sci. Technol. 2, 035031 (2021).

💼 Experiences

  • 2024.03 - present, Research Scientist, RIKEN-iTHEMS, Japan
  • 2023.12 - 2024.02, Visiting Scholar, Institute of Modern Physics(IMP) in Fudan University, China
  • 2020.09 - 2023.12, Postdoctoral Researcher, Frankfurt Institute for Advanced Studies, Germany
  • 2021.10 - 2023.10, Postdoctoral Fellow, Xidian-FIAS Joint Research Center, FIAS, Germany
  • 2021.03 - 2023.03, Research Assistant, Institute of Physics, Goethe University, Germnay
  • 2018.09 - 2020.09, Research Assistant, Department of Physics, Tsinghua University , China

📖 Educations

  • 2015.09 - 2020.06, Ph.D., Department of Physics, Tsinghua University , Beijing, China
  • 2018.10 - 2019.10, Joint Ph.D., Physics Department, University of Tokyo , Tokyo, Japan
  • 2012.09 - 2015.06, B.S., School of Physics, Dalian University of Technology, Dalian, China
  • 2011.09 - 2012.06, School of Chemistry, Dalian University of Technology, Dalian, China

📰 Archive

2024

2023